It is now a well-established proposition that both self-control and cognitive effort are forms of mental work. Several psychological studies have shown that people who are simultaneously challenged by a demanding cognitive task and by a temptation are more likely to yield to the temptation. Imagine that you are asked to retain a list of seven digits for a minute or two. You are told that remembering the digits is your top priority. While your attention is focused on the digits, you are offered a choice between two desserts: a sinful chocolate cake and a virtuous fruit salad. The evidence suggests that you would be more likely to select the tempting chocolate cake when your mind is loaded with digits. System 1 has more influence on behavior when System 2 is busy, and it has a sweet tooth.
People who are cognitively busy are also more likely to make selfish choices, use sexist language, and make superficial judgments in social situations. Memorizing and repeating digits loosens the hold of System 2 on behavior, but of course cognitive load is not the only cause of weakened self-control. A few drinks have the same effect, as does a sleepless night. The self-control of morning people is impaired at night; the reverse is true of night people. Too much concern about how well one is doing in a task sometimes disrupts performance by loading short-term memory with pointless anxious thoughts. The conclusion is straightforward: self-control requires attention and effort. Another way of saying this is that controlling thoughts and behaviors is one of the tasks that System 2 performs.
One of the main functions of System 2 is to monitor and control thoughts and actions “suggested” by System 1, allowing some to be expressed directly in behavior and suppressing or modifying others.
For an example, here is a simple puzzle. Do not try to solve it but listen to your intuition:
A bat and ball cost $1.10.
The bat costs one dollar more than the ball.
How much does the ball cost?
A number came to your mind. The number, of course, is 10: 10¢. The distinctive mark of this easy puzzle is that it evokes an answer that is intuitive, appealing, and wrong. Do the math, and you will see. If the ball costs 10¢, then the total cost will be $1.20 (10¢ for the ball and $1.10 for the bat), not $1.10. The correct answer is 5¢. It is safe to assume that the intuitive answer also came to the mind of those who ended up with the correct number—they somehow managed to resist the intuition.
Shane Frederick and I worked together on a theory of judgment based on two systems, and he used the bat-and-ball puzzle to study a central question: How closely does System 2 monitor the suggestions of System 1? His reasoning was that we know a significant fact about anyone who says that the ball costs 10¢: that person did not actively check whether the answer was correct, and her System 2 endorsed an intuitive answer that it could have rejected with a small investment of effort. Furthermore, we also know that the people who give the intuitive answer have missed an obvious social cue; they should have wondered why anyone would include in a questionnaire a puzzle with such an obvious answer. A failure to check is remarkable because the cost of checking is so low: a few seconds of mental work (the problem is moderately difficult), with slightly tensed muscles and dilated pupils, could avoid an embarrassing mistake. People who say 10¢ appear to be ardent followers of the law of least effort. People who avoid that answer appear to have more active minds.
Many thousands of university students have answered the bat-and-ball puzzle, and the results are shocking. More than 50% of students at Harvard, MIT, and Princeton gave the intuitive—incorrect—answer. At less selective universities, the rate of demonstrable failure to check was in excess of 80%. The bat-and-ball problem is our first encounter with an observation that will be a recurrent theme of this book: many people are overconfident, prone to place too much faith in their intuitions. They apparently find cognitive effort at least mildly unpleasant and avoid it as much as possible.
Now I will show you a logical argument—two premises and a conclusion. Try to determine, as quickly as you can, if the argument is logically valid. Does the conclusion follow from the premises?
All roses are flowers.
Some flowers fade quickly.
Therefore some roses fade quickly.
A large majority of college students endorse this syllogism as valid. In fact the argument is flawed, because it is possible that there are no roses among the flowers that fade quickly. Just as in the bat-and-ball problem, a plausible answer comes to mind immediately. Overriding it requires hard work—the insistent idea that “it’s true, it’s true!” makes it difficult to check the logic, and most people do not take the trouble to think through the problem.
This experiment has discouraging implications for reasoning in everyday life. It suggests that when people believe a conclusion is true, they are also very likely to believe arguments that appear to support it, even when these arguments are unsound. If System 1 is involved, the conclusion comes first and the arguments follow.
**
Intelligence is not only the ability to reason; it is also the ability to find relevant material in memory and to deploy attention when needed. Memory function is an attribute of System 1. However, everyone has the option of slowing down to conduct an active search of memory for all possibly relevant facts—just as they could slow down to check the intuitive answer in the bat-and-ball problem. The extent of deliberate checking and search is a characteristic of System 2, which varies among individuals.