Tuesday, December 29, 2015

Non-Euclidean Geometry


Gauss’s final contribution to research on the fifth postulate came shortly before he died, when, already seriously ill, he set the title for the probationary lecture of one of his brightest students, 27-year-old Bernhard Riemann: ‘On the hypotheses that lie at the foundations of geometry’. The cripplingly shy son of a Lutheran pastor, Riemann at first had some kind of breakdown struggling with what he would say, yet his solution to the problem would revolutionize maths. It would later revolutionize physics too, since his innovations were required by Einstein to formulate his general theory of relativity.

Riemann’s lecture, given in 1854, consolidated the paradigm shift in our understanding of geometry resulting from the fall of the parallel postulate by establishing an all-embracing theory that included the Euclidean and non-Euclidean within it. The key concept behind Riemann’s theory was the curvature of space. When a surface has zero curvature, it is flat, or Euclidean, and the results of The Elements all hold. When a surface has positive or negative curvature, it is curved, or non-Euclidean, and the results of The Elements do not hold.

The simplest way to understand curvature, continued Riemann, is by considering the behaviour of triangles. On a surface with zero curvature, the angles of a triangle add up to 180 degrees. On a surface with positive curvature, the angles of a triangle add up to more than 180 degrees. On a surface with negative curvature, the angles of a triangle add up to less than 180 degrees.

A surface with negative curvature is called hyperbolic. So, the surface of a Pringle is hyperbolic. The Pringle, however, is only an hors d’oeuvre in understanding hyperbolic geometry since it has an edge. Show a mathematician an edge and he or she will want to go over it.