Friday, January 31, 2014

Asya Kültürü ve Matematik Başarısı

“Şu rakamlara bir göz atın: 4, 8, 5, 3, 9, 7, 6. Yüksek sesle okuyun. Şimdi rakamlara bakmayın, 20 saniye ezberleyin ve sonra yüksek sesle sayın.

Eğer İngilizce biliyorsanız, bu sırayı mükemmel biçimde anımsama şansınız yüzde 50. Ancak eğer Çinliyseniz bu sayıları her seferinde doğru tekrar edebileceğiniz neredeyse kesin. Neden mi? Çünkü biz insanlar rakamları yaklaşık iki saniyelik döngüler halinde belleğimize kaydediyoruz. En kolay, bu iki saniyelik sürede söyleyebildiğimiz ya da okuyabildiğimiz kadarını ezberleyebiliyoruz. Ve Çince konuşanlar bu rakamları –4, 8, 5, 3, 9, 7, 6– hemen her seferinde anımsayabiliyor, çünkü İngilizce’nin tersine onların dili bu yedi rakamın hepsini iki saniyeye sığdırmalarına izin veriyor.



Bu örnek Stanislas Dehaene’nin The Number Sense adlı kitabından. Dehaene’nin açıkladığı gibi:

Çince’de rakamları ifade eden sözcükler son derece kısa. Büyük bölümü bir saniyenin dörtte birinden daha kısa bir sürede telaffuz edilebiliyor (örneğin, 4 “si” ve 7 “qi”). İngilizce karşılıkları –“four,” “seven”– daha uzun; bunları telaffuz etmek bir saniyenin yaklaşık üçte birini alıyor. İngilizce ve Çince arasındaki bellek boşluğu belli ki bütünüyle bu uzunluk farkına bağlı. Keltçe, Arapça, Çince, İngilizce ve İbranice gibi birbirinden çok farklı dillerde rakamları telaffuz etmek için gerekli süreyle o dili konuşanların bellek süresi arasında benzer bir karşılıklı ilişki söz konusu. Bu alanda ödülü Çince’nin Kanton lehçesi alıyor; bu lehçe, kısalığıyla, Hong Kong sakinlerine 10 rakamı anımsayabildikleri yıldırım gibi bir bellek sağlıyor.

Rakamları adlandırma sistemlerinin oluşturulmasında Batılı dillerle Asya dilleri arasında büyük bir fark olduğu anlaşılıyor. İngilizce’de fourteen (14), sixteen (16), seventeen (17), eighteen (18) ve nineteen (19) dediğimiz için oneteen, twoteen, threeteen ve fiveteen dememiz de beklenebilirdi. Ancak öyle demiyoruz. Farklı bir form kullanıyoruz: Eleven (11), twelve (12), thirteen (13) ve fifteen (15). Aynı biçimde, ilişkili oldukları sözcüklerle [four (4) ve six (6)] benzer sesleri içeren forty (40) ve sixty (60) var. Ancak aynı zamanda fifty (50), thirty (30) ve twenty (20) diyoruz ki bunlar ses olarak five (5), three (3) ve two (2) ile bir tür benzerlik gösterse de gerçekte tam olarak benzer değil. Ayrıca 20’nin üzerindeki sayılar için, önce onlar hanesini, sonra birler hanesini koyuyoruz [twenty-one (21), twenty-two (22)]; oysa onlu sayılarda tam tersini yapıyoruz [fourteen (14), seventeen (17), eighteen (16)]. İngilizce’de sayı sistemi son derece düzensiz. Çince’de, Japonca’da ve Kore dilinde öyle değil. Mantıksal bir sayma sistemleri var. On-bir. On-iki. İki-on-dört (24) gibi. Böyle sürüp gidiyor.

Bu fark Asyalı çocukların saymayı Amerikalı çocuklardan çok daha hızlı öğrenmeleri anlamına geliyor. Dört yaşındaki Çinli bir çocuk ortalama 40’a kadar sayabiliyor. Aynı yaştaki Amerikalı çocuklar ancak 15’e kadar sayabiliyor ve büyük bölümü beş yaşına gelene dek 40’a kadar sayamıyor. Bir diğer deyişle, Amerikalı çocuklar beş yaşına kadar en temel matematik becerilerinde Asyalı akranlarından çoktan bir yıl geride oluyor.

Sayı sistemlerinin düzenli olması, aynı zamanda, Asyalı çocukların toplama gibi temel işlemleri de çok daha kolay yapmaları anlamına geliyor. İngilizce konuşan yedi yaşındaki bir çocuğa kafasında otuz yedi ile yirmi ikiyi toplamasını söylediğinizde, sözcükleri sayılara çevirmesi gerekecektir (37 + 22). Ancak o zaman işlemi yapabilir: 2 artı 7 eşittir 9 ve 30 artı 20 eşittir 50 ve sonuç 59. Asyalı bir çocuğa üç-on-yedi ile iki-on-ikiyi toplamasını söylediğinizde ise denklem hemen oracıktadır, cümlenin içinde saklıdır. Rakamlara çevirmek gerekmez: Sonuç beş-on-dokuz.

“Asya sistemi şeffaf” diyor Northwestern University’den psikolog Karen Fuson; kendisi Asyalılarla Batılılar arasındaki farkları yakından incelemiş. “Bunun matematiğe yönelik tavrı bütünüyle farklı kıldığını düşünüyorum. Ezbere öğrenmek yerine, çıkarabildiğim bir kalıp söz konusu. Bunu yapabilirim beklentisi var. Akla uygun olduğuna ilişkin bir beklenti var. Biz kesirler için beşte üç (three-fifths) diyoruz. Çincesi ise kelimesi kelimesine ‘beş parçadan üçünü çıkar.’ Bu size kesirin ne olduğunu kavramsal olarak anlatıyor. Pay ile paydayı ayrıştırıyor.”

Batılı çocuklarda şu çok anlatılan matematiğin büyüsünü kaybetmesi hikayesi üçüncü ve dördüncü sınıfta başlıyor ve Fuson bunun bir kısmının belki de matematiğin bir anlam ifade etmemesine, dilbilimsel yapısının biçimsiz olmasına, temel kurallarının keyfi ve karmaşık görünmesine bağlı olduğunu ileri sürüyor.

Asyalı çocuklar ise, tam tersi, bu zihin karışıklığını neredeyse hissetmiyor. Kafalarında daha çok sayıyı tutabiliyor, daha hızlı toplama yapabiliyor. Onların dillerinde kesirlerin ifadesi kesir gerçekte neyse ona uyuyor; belki bu onların matematikten biraz daha fazla hoşlanmalarını sağlıyor ve belki de matematikten biraz daha fazla hoşlandıkları içindir ki zincirleme olarak, biraz daha çok çalışıyor, daha fazla matematik dersi alıyor, ev ödevlerini yapmaya daha istekli oluyorlar, vesaire, vesaire.



Bir diğer deyişle, matematik söz konusu olduğunda Asyalılar en başından bir avantaja sahip. Ancak bu sıradışı bir avantaj. Çinli, Güney Koreli ve Japon öğrenciler –ve bu ülkelerden yeni gelmiş olan göçmenlerin çocukları– matematikte Batılı akranlarını yıllarca önemli ölçüde geride bıraktı ve tipik varsayım bu durumun Asyalıların matematiğe bir tür doğuştan yatkınlık göstermeleriyle ilişkili olabileceğiydi. Psikolog Richard Lynn ise Asyalıların neden daha yüksek IQ’larının olduğunu açıklamak için Himalayalar, çok soğuk hava, premodern avcılık faaliyetleri, beyin büyüklüğü ve özel ünlü sesler ile ilişkili ayrıntılı bir evrim kuramı önerecek kadar ileri gitti.[*] İşte matematik hakkında böyle düşünüyoruz. Kalkülüs ve cebir gibi şeylerde başarılı olmanın, o kişinin zekasının basit bir işlevi olduğunu varsayıyoruz. Oysa Doğu’nun ve Batı’nın sayı sistemleri arasındaki farklılıklar çok farklı bir şey ortaya koyuyor; matematikte başarılı olmanın temeli bir grubun kültürü de olabilir.”